
1 ESSENTIAL KUBERNETES: 10 MULTI-TENANCY BEST PRACTICES FOR PLATFORM TEAMS

10 Multi-Tenancy
Best Practices for
Namespaces as
a Service (NaaS)

WHITE PAPER

ESSENTIAL KUBERNETES

2 ESSENTIAL KUBERNETES: 10 MULTI-TENANCY BEST PRACTICES FOR PLATFORM TEAMS

CONTENTS

Introduction: Multi-tenancy
and Namespaces

How Many Clusters is Right
for My Organization?

Considerations for Namespaces
as a Service
 Namespace Isolation
 Resource Quotas and Limits
 Network Policies for Isolation
 RBAC for Access Control
 Custom Admission Controllers
 Tenant-aware Monitoring and Logging
 Dynamic Resource Allocation
 Self-Service Workflows for Namespaces
 Multi-tenant Backup and Disaster Recovery
 Security, Kubernetes Upgrades and
 Patch Management

How Rafay Powers
Namespaces as a Service
 Network Policy Manager
 Cost Management
 Workspaces
 Policy Management

Namespaces Are a Game-Changer,
If Done Correctly

3

4

5

5
5
6
6
6
7
7
7
8
8

9

9

10
11
11

12

3 ESSENTIAL KUBERNETES: 10 MULTI-TENANCY BEST PRACTICES FOR PLATFORM TEAMS

Kubernetes multi-tenancy is a concept that defines
how multiple tenants, such as teams or individuals
within an organization, share the same Kubernetes
infrastructure. Typically, this is done by slicing
Kubernetes clusters into smaller environments called
namespaces.

The concept is simple. But in practice, managing
multi-tenancy across a large number of users
or departments, sometimes across separate
infrastructures, can be extremely difficult and risky.

And without the right guardrails in place, providing
namespaces as a service to teams of developers can
lead to performance and security challenges.

Introduction: Multi-tenancy
and Namespaces

4 ESSENTIAL KUBERNETES: 10 MULTI-TENANCY BEST PRACTICES FOR PLATFORM TEAMS

It depends. The simplest approach for your organization might be to create
a Kubernetes cluster for each application. However, this quickly becomes
overly costly due to several factors that impact efficiency, resource utilization,
and management complexity. Kubernetes is designed to manage multiple
containerized applications efficiently within a single cluster. Deploying separate
clusters for each application leads to resource wastage, increased operational
overhead, and reduced scalability.

Why? For starters, because each cluster consumes resources such as
memory, CPU, and network bandwidth. By provisioning a new cluster for every
application, resources are underutilized as each cluster typically has its own
control plane, nodes, and networking infrastructure. This results in increased
infrastructure costs and inefficient resource allocation.

Moreover, managing multiple clusters introduces complexity in terms of
configuration, monitoring, and security. Each cluster requires its own setup,
upgrades, and maintenance, leading to duplicated efforts and potential
inconsistencies. Scaling becomes challenging, as it’s harder to distribute
resources optimally across isolated clusters. Additionally, security concerns
arise when each cluster requires separate access controls, certificates, and
network policies. Coordinating updates, patches, and security measures across
numerous clusters is time-consuming and error-prone.

In contrast, using a single cluster with appropriate namespaces for different
applications allows efficient resource sharing, streamlined management, and
better scalability. This concept, called multi-tenancy, simplifies deployment,
monitoring, and updates, reducing operational overhead and enhancing
resource utilization.

But managing namespaces isn’t exactly straightforward, particularly regarding
resource allocation, access control, and security. If mastered, however, the
enterprise can gain immensely via the sharing of cloud resources and a lowered
total cost of cloud computing. On average, Rafay customers see a 63% savings
in cloud costs by leveraging multi-tenancy and namespaces.

In this white paper, we will explore essential Kubernetes multi-tenancy
best practices that are required to help organizations harness the power of
Kubernetes and deliver namespaces as a service.

How Many Clusters is
Right for My Organization?

Managing
Multiple Clusters

CONFIGURATION

MONITORING

SECURITY

5 ESSENTIAL KUBERNETES: 10 MULTI-TENANCY BEST PRACTICES FOR PLATFORM TEAMS

Namespaces are a fundamental feature in Kubernetes that provide a way to
partition a single cluster into multiple virtual clusters. Leveraging namespaces
for multi-tenancy allows you to logically isolate different tenants within the same
cluster. It’s crucial to establish a clear naming convention for namespaces that
reflects the tenant it belongs to.

However, namespaces alone are not enough to achieve complete isolation.
Network policies and role-based access control (RBAC) must be properly
configured with namespaces (see below) to control communication and access
between namespaces. This way, tenants can only interact with resources in their
designated namespace, ensuring separation and security.

Namespace Isolation

Tenant-aware
Monitoring & LoggingNamespace Isolation

Dynamic
Resource Allocation

Resource Quotas
& Limits

Self-Service Workflows
for Namespaces

Network Policies
for Isolation

Multi-tenant Backup
& Disaster RecoveryRBAC for

Access Control

Security, Kubernetes Upgrades
& Patch ManagementCustom Admission

Controllers

Resource quotas and limits play a significant role in multi-tenant Kubernetes
environments. Quotas help allocate a specific amount of resources (CPU,
memory, storage) to each tenant, preventing one tenant from consuming
excessive resources and impacting others. Limits, on the other hand, ensure that
a tenant’s workload doesn’t exceed its allocated resources, thereby maintaining
predictable performance and availability.

Properly defining and enforcing resource quotas and limits prevents resource
contention, guarantees fair resource distribution, and safeguards against
resource-hogging applications.

Resource Quotas and Limits

Kubernetes
Multi-tenancy

Considerations for Namespaces as a Service

6 ESSENTIAL KUBERNETES: 10 MULTI-TENANCY BEST PRACTICES FOR PLATFORM TEAMS

Kubernetes Network Policies are a powerful tool to control network
communication between different tenants’ workloads. By defining and applying
network policies, you can specify which pods can communicate with each other
based on labels, namespaces, or IP ranges. This fine-grained control ensures
that tenants’ workloads communicate only with the necessary and approved
components, enhancing security and isolation.

Role-Based Access Control (RBAC) is crucial in a multi-tenant Kubernetes
environment to regulate who can access and manage resources. It enables
administrators to define roles and permissions for different users or groups,
granting them appropriate access levels to specific namespaces or resources.

Implementing RBAC ensures that tenants have the necessary permissions to
manage their own resources while preventing unauthorized access or accidental
modifications that could impact other tenants.

Admission controllers are plugins that intercept and modify requests to
the Kubernetes API server before they are persisted in the cluster. Custom
admission controllers can be developed to enforce organization-specific policies
or checks during resource creation and updates.

For multi-tenancy, custom admission controllers can help enforce naming
conventions, resource labels, and other policies specific to your organization,
enhancing consistency and adherence to best practices across tenants

Network Policies for Isolation

RBAC for Access Control

Custom Admission Controllers

7 ESSENTIAL KUBERNETES: 10 MULTI-TENANCY BEST PRACTICES FOR PLATFORM TEAMS

Monitoring and logging are essential components of managing a Kubernetes
cluster, but in a multi-tenant environment, they become even more critical. Each
tenant’s workloads should be monitored and logged separately to facilitate
troubleshooting, performance optimization, and resource usage analysis.

Implementing a tenant-aware monitoring and logging solution ensures that each
tenant can monitor their own resources without access to other tenants’ data,
maintaining privacy and security.

In a multi-tenant Kubernetes setup, workloads from different tenants may
experience varying levels of load. Implementing dynamic resource allocation
mechanisms, such as Horizontal Pod Autoscaling and Cluster Autoscaler, helps
in automatically adjusting resource allocation based on actual usage.

Dynamic resource allocation ensures that resources are efficiently distributed
among tenants, providing optimal performance and cost-effectiveness.

Self-service namespaces are Kubernetes namespaces that can be created by
developers, data scientists, researchers, etc. on-demand without the need of an
administrator of the cluster.

By providing a self-service workflow for namespaces, development teams
gain autonomy and the ability to manage their own environments. This speeds
deployment as they can independently create and modify namespaces without
relying on central IT or cluster administrators. This autonomy can lead to faster
development cycles and better collaboration among different development
teams sharing the same Kubernetes cluster.

Providing namespaces in a self-service fashion compared to submitting ticket
requests to administrators for the creation of clusters eliminates the back and
forth of tickets in order to provide access to infrastructure.

Tenant-aware Monitoring and Logging

Dynamic Resource Allocation

Self-Service Workflows
for Namespaces

8 ESSENTIAL KUBERNETES: 10 MULTI-TENANCY BEST PRACTICES FOR PLATFORM TEAMS

Kubernetes backup and disaster recovery strategies should be tailored to a
multi-tenant Kubernetes environment. Each tenant’s data, configuration, and
state should be isolated and restorable independently. Regularly test backup
and restore procedures to ensure that tenants can recover their data and
applications in case of failures.

Security is paramount in any Kubernetes environment, and multi-tenancy adds
an extra layer of complexity. Stay updated with security patches and updates for
Kubernetes and its components. Perform regular security audits, vulnerability
assessments, and penetration testing.

Note that any security patches or upgrades applied to a cluster affect every
namespace running on that cluster. So, each application running in its own
namespace will need to be patched. Typically, this is done by each application
team as part of the application and Kubernetes lifecycle.

It is also recommended to utilize container scanning tools to ensure that tenants’
container images are free from vulnerabilities before deployment. Implement
policies that require tenants to use only trusted container registries.

Multi-tenant Backup
and Disaster Recovery

Security, Kubernetes Upgrades
and Patch Management

9 ESSENTIAL KUBERNETES: 10 MULTI-TENANCY BEST PRACTICES FOR PLATFORM TEAMS

The Rafay Cloud Automation Platform includes out-of-box tooling that platform teams can leverage at scale to
address challenges around shared clusters. Examples include:

Network Policy Manager
By default, namespaces are not isolated in Kubernetes environments. The Rafay Cloud Automation Platform provides
an easy way to configure/enforce network policies for namespace isolation.

How Rafay Powers
Namespaces as a Service

10 ESSENTIAL KUBERNETES: 10 MULTI-TENANCY BEST PRACTICES FOR PLATFORM TEAMS

Cost Management
Granular visibility into resource utilization & cost metrics by namespace, labels, workloads are available that help
platform teams enable showback/chargeback models or drive cost optimization exercises.

11 ESSENTIAL KUBERNETES: 10 MULTI-TENANCY BEST PRACTICES FOR PLATFORM TEAMS

Workspaces
Platform teams can create projects/workspaces and assign resource quotas to application teams to enable a self-
service model. This allows application teams to create/manage namespaces (without cluster-wide privileges) within
assigned quotas and create pipelines to deploy applications.

Policy Management
The platform provides tooling to configure/enforce namespace specific OPA Gatekeeper policies and provides
centralized visibility around policy violations to application teams for the resources that they own.

12 ESSENTIAL KUBERNETES: 10 MULTI-TENANCY BEST PRACTICES FOR PLATFORM TEAMS

Implementing namespaces as a service in Kubernetes can be a game-
changer for organizations seeking efficient resource utilization and streamlined
Kubernetes management. By following these essential best practices, you
can successfully navigate the complexities of multi-tenancy while maintaining
security, isolation, and scalability. The added benefit is a lower total cost of
cloud computing - 63% on average for Rafay customers.

Namespaces Are
a Game-Changer,
If Done Correctly

Learn More About Rafay Systems Ready to find out why so many enterprises
and platform teams have partnered with Rafay
for Kuberenetes multi-tenancy? Sign up for
a free trial today.

Rafay Systems, Inc. | 530 Lakeside Dr. Ste 220 Sunnyvale, CA 94085 | 669.336.4800 | rafay.co
© 2024 Rafay Systems, Inc. All rights reserved. All other trademarks and service marks are property of their respective owners.

Lower cost of
cloud computing for

Rafay customers

63%

https://rafay.co/start/
https://rafay.co/platform/zero-trust-access-service/
https://twitter.com/rafaysystemsinc
https://www.linkedin.com/company/rafay-systems/
mailto:info%40rafay.co?subject=
https://rafay.co/the-kubernetes-current/

