
Rafay Platform
GPU PaaS Multi-Tenancy Controls

1

Version History

Version Date Updates

0.1 July 3, 2024 Initial version based on Rafay docs

1.0 Dec 8, 2024 Standalone version

2

TABLE OF CONTENTS

Introduction 5
Multi-Tenancy Controls 5

1. Virtual Clusters 6
Key Characteristics 7

Control Plane Isolation 7
Workload Placement 7
Networking & RBAC Isolation 7
Lightweight 8

Why is this needed? 8
Multi-Tenancy 8
Dev/Test Environments 8
Multiple Kubernetes Versions 8
Cost Optimization 8
Avoid Namespace Collisions 8
Isolation for Third-Party Applications 9

2. Runtime Isolation 9
Why is this needed? 10

Enhanced Security 10
Compliance and Multi-Tenancy 11
Running Untrusted or High-Risk Workloads 11
Compatibility with Existing Container Ecosystems 11
Lightweight Virtualization 11
Flexibility 12
Resilience and Fault Tolerance 12

3. Network Policies 12
Why is this needed? 13

Isolation Between Tenants 13
Enhanced Security Posture 14
Compliance and Regulatory Requirements 14
Traffic Management 15
Mitigating Misconfigurations 15
Supporting DevOps and Microservices 15
Protecting Shared Infrastructure 16

4. Cluster Policies 16
Why is this needed? 17

Security Policies 17

3

Label and Annotation Policies 18
Admission Control Policies 18
Compliance Policies 19

5. Role-Based Access Control 19
Why is this needed? 20

Security and Access Management 20
Multi-Tenancy Support 20
Compliance and Auditing 20
Operational Efficiency 21
Protection Against Insider Threats 21
Support for DevOps Practices 21

6. Secure, Remote Access 21
Why is this needed? 22

Zero Trust Principles 22
Granular Access Control 22
Compliance and Auditing 23
Operational Efficiency and Governance 23
Multi-Tenancy Support 23
Seamless Integration with Existing Workflows 23
Zero Trust Network Access (ZTNA) 24

7. Resource Quotas 24
Why is this needed? 25

Prevent Resource Exhaustion 25
Limit Overprovisioning 26
Control Resource Allocation 26
Improve Performance Isolation 26
Compliance and Governance 26
Simplify Capacity Planning 27
Support Multi-Tenancy 27

8. Audit Logging 27
Why is this needed? 28

Security and Incident Response 28
Compliance and Regulatory Requirements 28
Operational Efficiency 29
Visibility and Transparency 29
Troubleshooting and Debugging 29
Consistent Policy Enforcement 29

9. Cost Allocation 30
Why is this needed? 31

Visibility into Resource Consumption 31
Accountability and Chargeback 32

4

Budget Management and Planning 32
Optimizing Resource Usage 32
Multi-Tenancy Support 33
Supporting Financial Accountability 33
Compliance and Reporting 33
Encouraging Efficient Cloud Usage 33

10. Network Segmentation 34
Why is this needed? 34

Fine-Grained Network Isolation 34
Support for Virtual Private Clouds (VPCs) 35
Advanced Security Features 35
Tenant-Level Resource Allocation 35
Logical Routing and NAT 35
Cross-Tenant and External Connectivity 35

5

Introduction

This document discusses how the Rafay Platform enables software-based multi-tenancy
controls that enables operators to deploy and operate multiple isolated virtual clusters on a
single cluster. These controls allow multiple tenants to co-exist on the same host cluster.These
controls are automatically implemented and enforced to ensure that risks associated with
threats such as lateral escalation, etc., can be blocked.

Multi-Tenancy Controls

The Rafay Platform is a multi-tenant platform that enables CSPs to deliver GPU, compute
resources, AI-ML/Gen tools and services to their customers on their GPU infrastructure in a
Platform-as-a-Service (PaaS) fashion. The Rafay platform allows CSPs to partition their GPU
infrastructure and allocate it to multiple organizations.

With Rafay, CSPs can offer various flavors and sizes of GPU and compute resources (e.g. bare
metal nodes, VMs, Kubernetes Clusters, Virtual Kubernetes clusters with one or more GPUs,
and fractional GPUs). They can also provide their users with turnkey services (such as Jupyter
notebooks), AI/ML tools (such as Kubeflow for MLOps and Ray) and GenAI playgrounds for
LLM evaluation, fine-tuning, and inference.

To ensure that all variety of use cases can be delivered to enterprise users as well as one-off
developers, being able to share infrastructure amongst multiple users is key. With the right set of
controls in place, customers are able to deliver shared infrastructure to users, resulting in lower
costs and higher utilization.

6

The Rafay Platform supports the following controls to ensure comprehensive, secure and
simple-to-deliver multi-tenant environments:

1. Virtual Clusters

vClusters (i.e. virtual clusters) are lightweight, namespace-scoped virtual Kubernetes
clusters that allow you to create isolated Kubernetes clusters within a larger “host”
Kubernetes cluster.

vClusters behave like a full-fledged Kubernetes cluster for users and applications but
are backed by the resources and API of the host cluster. vClusters run their own
Kubernetes API server within a namespace of the host cluster.

7

Key Characteristics

Here’s how vClusters help achieve isolation

Control Plane Isolation

Each vCluster is isolated within a namespace on the host cluster. The virtual cluster has
its own API server and control plane components, separate from the host cluster. Users
interact with the vCluster as if it were an independent Kubernetes cluster.

Workload Placement

Workloads scheduled in the vCluster are translated into pods in the host cluster’s
namespace.

Networking & RBAC Isolation

The vCluster has its own Kubernetes networking, RBAC, and policies, distinct from the
host cluster.

8

Lightweight

Because vClusters are virtual, they are faster to spin up and require fewer resources
than creating dedicated Kubernetes clusters.

Why is this needed?

Let's review the use cases and challenges addressed by vClusters.

Multi-Tenancy

In a multi-tenant environment, tenants often need isolated clusters. Creating dedicated
clusters for each tenant is resource-intensive and operationally complex. vClusters
provide tenant isolation within a single host cluster, reducing overhead while maintaining
independence.

Dev/Test Environments

Developers need isolated environments for testing, debugging, and prototyping.
Provisioning dedicated clusters is time-consuming and expensive. Developers can spin
up lightweight vClusters quickly, test changes, and discard them when done.

Multiple Kubernetes Versions

Users may need specific Kubernetes versions for their applications which may require
setting up clusters with specific versions. Since each vCluster has its own API server,
you can run different Kubernetes versions in parallel on the same host cluster.

Cost Optimization

Running multiple dedicated Kubernetes clusters for isolated workloads increases costs
for infrastructure and management. vClusters leverage a single host cluster’s resources,
reducing infrastructure and operational expenses.

Avoid Namespace Collisions

9

Using namespaces for multi-tenancy in Kubernetes can lead to conflicts in resource
names, RBAC policies, and network configurations. Each vCluster operates
independently and avoids namespace-level conflicts.

Isolation for Third-Party Applications

Third-party applications may require specific configurations or elevated permissions,
which can conflict with other workloads in the host cluster. vClusters isolate the
application and provide a separate control plane for configuration.

2. Runtime Isolation
Containers operating on Kubernetes clusters share the Linux kernel (i.e. default
behavior). The image below shows three containers using the same Linux kernel. For
shared, multi-tenant Kubernetes clusters especially with users that the service
provider cannot control, there is always the risk of container escapes.

Kata containers are a secure alternative to address the issue above. Rafay's blueprint
for soft multi-tenancy provides a turnkey option for Kata Containers. Rafay has
developed an admission controller that will automatically deploy end user resources

10

https://docs.rafay.co/aiml/gpupaas/administration/mt/isolated/

as kata containers without the end user having to make any changes to their
application manifests.

Kata is a container runtime technology designed to provide the security advantages of
virtual machines (VMs) while maintaining the lightweight performance and agility of
containers. The image below visually shows how Kata containers are different from
regular container runtime.

Without Kata based Isolation
Notice that with this mode, there is a single Linux kernel shared by multiple
processes.

With Kata based Isolation

Notice that with Kata, each container is essentially operating inside a “microvm” on

the underlying Linux kernel.

11

Why is this needed?

Enhanced Security

● VM-Level Isolation: Kata Containers run each container inside a lightweight
virtual machine, providing strong isolation between containers. This VM-level
isolation mitigates the "noisy neighbor" problem and reduces the risk of
security breaches spreading from one container to another.

● Protection from Kernel Vulnerabilities: Since each container has its own
kernel instance inside the VM, Kata Containers protect against vulnerabilities
in the host kernel. Even if a container is compromised, it cannot directly affect
the host or other containers running on the same host.

Compliance and Multi-Tenancy
● Security Compliance: For organizations operating in regulated industries

(e.g., finance, healthcare), Kata Containers help meet strict security and
compliance requirements by offering enhanced isolation. This makes them
suitable for workloads that require higher levels of security.

12

● Multi-Tenant Environments: Kata Containers are ideal for multi-tenant
environments, such as public cloud platforms or shared Kubernetes clusters,
where multiple users or applications share the same infrastructure. The strong
isolation provided by VMs helps ensure that each tenant is securely isolated
from others.

Running Untrusted or High-Risk Workloads
● Sandboxing Applications: Kata Containers can be used to sandbox

untrusted or high-risk workloads. By running these workloads in a separate
virtual machine, they are isolated from the rest of the system, reducing the risk
of potential security issues.

● Securing Sensitive Data: Workloads that handle sensitive data, such as
financial transactions or personal information, can benefit from the enhanced
security provided by Kata Containers, as they ensure that data is isolated and
protected from other processes.

Compatibility with Existing Container Ecosystems
● Kubernetes Integration: Kata Containers are compatible with Kubernetes,

meaning they can be used as a drop-in replacement for standard container
runtimes. This allows organizations to leverage Kata Containers for workloads
that require additional security without disrupting existing Kubernetes
workflows.

● Container Runtime Interface (CRI) Support: Kata Containers are compliant
with the Kubernetes Container Runtime Interface (CRI), ensuring they can
seamlessly integrate with Kubernetes and other container orchestration tools.

Lightweight Virtualization
● Performance Efficiency: While Kata Containers provide the security benefits

of VMs, they are designed to be lightweight and efficient (i.e. a microVM vs. a
regular VM). The overhead is minimized compared to traditional VMs, allowing
Kata Containers to offer near-native container performance.

● Fast Boot Times: Kata Containers leverage optimized virtual machine
technologies that offer fast boot times, making them suitable for dynamic and
high-performance environments where rapid scaling and responsiveness are
critical.

13

Flexibility
● Hybrid Workloads: Kata Containers enable organizations to run a mix of

traditional containers and more isolated Kata Containers on the same
infrastructure. This flexibility allows different levels of security and isolation
based on the specific requirements of each workload.

● Edge Computing: In edge computing scenarios, where security and
performance are both critical, Kata Containers can provide secure and efficient
container runtimes for edge devices that may have limited resources.

Resilience and Fault Tolerance
● Fault Isolation: Because each Kata Container runs in its own VM, faults or

crashes within one container are isolated and do not affect other containers or
the host system. This enhances the overall resilience and fault tolerance of the
infrastructure.

In summary, Kata Containers are designed to bridge the gap between the high
performance of traditional containers and the strong isolation of virtual machines.
They are particularly useful in scenarios where security, compliance, and isolation are
paramount, such as in multi-tenant environments, for running untrusted workloads, or
in regulated industries. By using Kata Containers, organizations can achieve a higher
level of security without sacrificing the agility and efficiency that containers provide.

3. Network Policies

Network Policies are a mechanism to control network traffic flow within and from/to
Kubernetes clusters.

With the Rafay blueprint, all namespaces are locked down with a default network policy
that blocks all resources in the namespace to exchange network traffic with "other
namespaces" and "outside the cluster"

Primary Threat Vectors Default
Policy

14

https://kubernetes.io/docs/concepts/services-networking/network-policies/

1 Rogue container tries to connect to resources in other
namespaces

BLOCKED

2 Rogue container tries to connect to resources outside
cluster to exfiltrate data or download malicious software

BLOCKED

Shown below is a screenshot of what network policy enforcement looks like in Rafay

Why is this needed?

Network policies are crucial for multi-tenant environments because of the following
reasons:

Isolation Between Tenants

● Security Boundaries: In a multi-tenant environment, different teams,
departments, or organizations share the same Kubernetes cluster. Network
policies help enforce isolation between tenants by controlling which pods can
communicate with each other across different namespaces. Without network
policies, there could be unintended or unauthorized cross-tenant communication,
potentially leading to data leaks or security breaches.

15

● Namespace Segmentation: Network policies can restrict traffic between
namespaces, ensuring that each tenant's workloads are isolated from others.
This is particularly important for maintaining the confidentiality and integrity of
data and applications within each tenant's namespace.

Enhanced Security Posture

● Minimizing Attack Surface: By default, Kubernetes allows unrestricted
communication between pods within the same cluster. Network policies allow
administrators to restrict this communication, minimizing the attack surface by
only allowing necessary traffic. This reduces the risk of lateral movement by
attackers within the cluster.

● Preventing Data Exfiltration: Network policies can be configured to block traffic
from sensitive workloads to the internet or other untrusted networks, preventing
unauthorized data exfiltration and ensuring that sensitive data remains secure
within the cluster.

Compliance and Regulatory Requirements

● Data Protection: Many industries have stringent regulations around data
protection, particularly when dealing with multi-tenant environments. Network
policies help ensure that only authorized communication occurs within the
cluster, which is crucial for meeting compliance requirements such as GDPR,
HIPAA, or PCI-DSS.

● Auditable Controls: Implementing network policies provides auditable controls
over network traffic, which is often required for regulatory compliance. This helps
demonstrate to auditors that appropriate measures are in place to protect data
and control access.

Traffic Management

16

● Controlled Communication: Network policies enable fine-grained control over
pod-to-pod and pod-to-service communication, ensuring that only essential traffic
flows within the cluster. This can help optimize network performance and reduce
unnecessary traffic, leading to more efficient use of resources.

● Service Isolation: Critical services can be isolated from non-essential or less
secure services using network policies, ensuring that high-value services have
the necessary protection and performance guarantees.

Mitigating Misconfigurations

● Preventing Miscommunication: In complex multi-tenant environments, it’s easy
to misconfigure applications or services, leading to unintentional exposure of
sensitive data. Network policies act as an additional layer of defense, ensuring
that even if there’s a configuration error, unauthorized traffic is still blocked.

● Default-Deny Posture: By implementing a "default-deny" network policy,
administrators can ensure that no communication is allowed unless explicitly
permitted. This proactive approach helps mitigate the risk of accidental exposure
due to misconfigurations.

Supporting DevOps and Microservices

● Limited Blast Radius: If a tenant's application is compromised, network policies
can limit the impact (blast radius) of the breach by preventing the attacker from
spreading to other parts of the cluster.

In summary, network policies are essential in a multi-tenant environment to enforce
isolation, enhance security, comply with regulations, and manage traffic effectively. They
provide a necessary layer of control that ensures tenants can coexist securely within the
same host cluster.

17

4. Cluster Policies

With all clusters under management, a default cluster level policy (based on OPA
Gatekeeper with out-of-box policies) is automatically enforced and implemented to
strengthen governance. This provides the means to control what users can/cannot do
on the cluster. This also ensures that the clusters are always in compliance with
centralized policies. The cluster policies are closely coordinated with network policies to
ensure there is defense in depth and completeness.

Why is this needed?

In a Kubernetes based multi-tenant environment, cluster policies are crucial for
enforcing security, resource management, and compliance across different tenants.
Here are some important policies that are particularly relevant:

Security Policies

● Security Policies for Pods
● Policy Purpose: Enforce security best practices for pods, such as running

as non-root, restricting the use of privileged containers, and controlling the

18

https://docs.rafay.co/aiml/gpupaas/administration/mt/network_policy/

use of hostPath volumes. This ensures that tenants cannot deploy
potentially insecure workloads that might compromise the cluster.

● Example: Enforce that all pods must run as non-root and disallow
privileged mode.

● Image Whitelisting/Blacklisting
○ Policy Purpose: Restrict the use of container images to approved

repositories or specific image versions. This helps prevent the deployment
of untrusted or vulnerable images by tenants.

○ Example: Enforce that all images must be pulled from an internal registry
or a specific list of trusted registries.

Label and Annotation Policies

● Mandatory Labels and Annotations
● Policy Purpose: Enforce the use of specific labels and annotations on

resources for tracking, auditing, and management purposes. This is
important for organizing resources, applying policies selectively, and
ensuring consistent tagging across tenants.

● Example: Enforce that every resource has labels identifying the tenant,
environment (e.g., dev, prod), and application.

● Namespace Ownership
○ Policy Purpose: Ensure that namespaces have specific labels or

annotations that identify the owning team or organization, which helps in
managing tenant-specific policies and access controls.

○ Example: Enforce that each namespace has an owner label that maps to
the responsible team or tenant.

Admission Control Policies
● Restrict Certain Resource Types

○ Policy Purpose: Prevent tenants from creating or modifying certain
resource types that could impact the entire cluster (e.g., preventing
tenants from creating ClusterRoleBindings or mutating webhooks).

○ Example: Enforce that tenants cannot create or modify ClusterRoles,
ClusterRoleBindings, or custom resource definitions (CRDs).

● Disallow Specific Configurations

19

○ Policy Purpose: Prevent tenants from applying certain configurations that
might be insecure or violate cluster policies (e.g., disallowing the use of
certain annotations that might bypass security controls).

○ Example: Enforce that hostNetwork is not enabled in pod specifications, or
block the use of the kubernetes.io/ingress.class annotation unless it
adheres to predefined classes.

Compliance Policies
● Compliance with Regulatory Standards

○ Policy Purpose: Ensure that tenant workloads comply with regulatory
standards such as GDPR, HIPAA, or PCI-DSS by enforcing specific
configurations and controls.

○ Example: Enforce that all sensitive workloads have encryption enabled for
data at rest and in transit.

In summary, centralized policy enforcement plays a crucial role in enforcing security,
resource management, compliance, and operational consistency. By implementing
these policies, you can ensure that each tenant operates within their allocated
boundaries, adheres to security best practices, and complies with organizational or
regulatory requirements.

5. Role-Based Access Control

Kubernetes RBAC is a critical security control to ensure that users and workloads only
have access to resources required to execute their tasks. Users are allocated a
namespace on the host cluster where the virtual cluster is deployed for them. The users
only have access to the virtual cluster and do not even know about the existence of the
underlying Kubernetes namespace.

Primary Threat Vector Default
Policy

20

1 Ensure that tenants can only see and operate on
resources inside their assigned virtual cluster operating
inside a namespace in the host cluster

ENFOR
CED

The tenant/user is automatically mapped to a "ClusterRole" for the virtual cluster. Note
that although the virtual cluster is operating inside a namespace (with a role) in the host
cluster, the user is not provided access to the namespace itself.

Why is this needed?

Role-Based Access Control (RBAC) is required because of the following reasons:

Security and Access Management
● Fine-Grained Permissions: RBAC allows administrators to define granular

access controls, ensuring that users, applications, and services have only the
permissions they need to perform their tasks—no more, no less. This principle of
least privilege minimizes the risk of unauthorized actions.

● User Authentication and Authorization: RBAC helps in authenticating users
and authorizing their actions based on their roles, preventing unauthorized
access to sensitive resources within the Kubernetes cluster.

Multi-Tenancy Support
● Isolated Environments: In a multi-tenant Kubernetes environment where

multiple teams or organizations share the same cluster, RBAC helps isolate
resources and operations between tenants. This prevents one team from
inadvertently or maliciously accessing or modifying another team's resources.

● Namespace-Specific Controls: RBAC allows for the application of different
access controls to different namespaces, supporting environments where
different teams or projects operate within their own isolated namespaces.

21

Compliance and Auditing
● Regulatory Compliance: Many industries have strict regulations around access

control and data handling. RBAC allows organizations to enforce these controls
within their Kubernetes clusters, helping to meet compliance requirements.

● Auditability: RBAC provides a clear and auditable record of who has access to
what resources and what actions they are allowed to perform. This is critical for
tracking changes, troubleshooting issues, and ensuring accountability.

Operational Efficiency
● Centralized Management: RBAC centralizes access management, making it

easier for administrators to define, modify, and manage permissions across a
large and complex Kubernetes environment.

● Scalability: As a Kubernetes cluster scales, the number of users and resources
grows, making manual permission management impractical. RBAC provides a
scalable way to manage access across many users and resources.

Protection Against Insider Threats
● Minimizing Internal Risks: RBAC reduces the risk of insider threats by ensuring

that users only have access to the resources they need to do their jobs. This
limits the potential damage from accidental or malicious actions by insiders.

● Role Segregation: By assigning roles based on specific job functions, RBAC
helps enforce role segregation, ensuring that no single user has excessive
control or access across the system.

In summary, RBAC is a critical component of Kubernetes that enhances security,
supports multi-tenancy, ensures compliance, and improves operational efficiency by
providing a flexible and scalable way to manage access to resources.

6. Secure, Remote Access

To ensure highest levels of security, all users are required to centrally authenticate using
the configured Identity Provider (IdP). Once successfully authenticated, an ephemeral
service account for the user is federated on the remote cluster in a Just in Time (JIT)
manner.

Users are provided with the means to remotely access their namespace and perform
Kubectl operations using the Kubectl CLI or an integrated browser based shell.

22

https://docs.rafay.co/integrations/sso/overview/

Why is this needed?
Secure remote access is critical for enhancing security, governance, and operational
efficiency. Here are some reasons why it is required:

Zero Trust Principles
● Identity Verification: Enforce strict identity verification before granting access.

Every request is authenticated and authorized, ensuring that only legitimate
users with the appropriate permissions can interact with the cluster.

● No Implicit Trust: In a Zero Trust model, no user or device is inherently trusted,
even if they are within the network perimeter. Reduce the risk of insider threats or
compromised credentials leading to unauthorized access.

Granular Access Control
● Least Privilege Access: Allows administrators to enforce the principle of least

privilege by defining granular roles and permissions. Users are granted only the
minimal level of access necessary for their tasks, which limits the potential
impact of a compromised account.

● Contextual Access: Access can be restricted based on various factors such as
time of day, location, or the security posture of the device being used. This adds

23

another layer of control, ensuring that even authorized users can only access
resources under specific conditions.

Compliance and Auditing
● Detailed Audit Logs: Comprehensive and centralized logging of all actions

performed within the cluster. This is crucial for meeting compliance requirements,
as it ensures that all access and modifications are fully traceable and auditable.

● Regulatory Compliance: For organizations subject to stringent regulatory
frameworks (e.g., GDPR, HIPAA, PCI-DSS), ensure that access controls are
enforced and that all actions within the Kubernetes environment can be audited.

Operational Efficiency and Governance
● Centralized Management: Centralized management of access controls, policies,

and auditing across multiple clusters. This simplifies governance and ensures
consistent policy enforcement across all environments, whether on-premises or
in the cloud.

● User-Friendly Interface: The platform offers an intuitive interface for managing
kubectl access, making it easier for administrators to configure and enforce
policies without needing to manually manage complex configurations or scripts.

Multi-Tenancy Support
● Tenant Isolation: In multi-tenant environments, ensure that tenants are properly

isolated from each other. Restrict users’ access to only the resources within their
own namespace or tenant, preventing accidental or malicious cross-tenant
access.

● Per-Tenant Policies: Administrators can define different policies for different
tenants, ensuring that each tenant’s security and access requirements are met
without compromising the overall security of the cluster.

Seamless Integration with Existing Workflows
● Compatibility with Existing Tools: Integrates seamlessly with existing CI/CD

pipelines, development workflows, and Kubernetes management tools. This
ensures that security enhancements do not disrupt ongoing operations or require
significant changes to established processes.

24

● Automation and Scripting Support: The solution supports automation and
scripting, enabling teams to maintain their productivity while adhering to stringent
security controls.

Zero Trust Network Access (ZTNA)
● Secure Access: For remote teams or distributed environments, provide a Zero

Trust Network Access (ZTNA) model to provide secure, authenticated access to
private/remote Kubernetes clusters without requiring a VPN. This enhances
security for remote operations while maintaining ease of access for users.

Significantly enhance the security, compliance, and operational efficiency by
implementing Zero Trust principles. Provide granular access controls, robust auditing
capabilities, and centralized management, making it an essential tool for organizations
that need to secure their environments, particularly in multi-tenant or highly regulated
settings.

7. Resource Quotas
Resource quotas and limits are automatically implemented and enforced. This prevents
one tenant’s workloads from affecting the performance or availability of another tenant’s
workloads.

Shown below is an example of resource quotas for GPU in this namespace.

25

Why is this needed?
Resource quotas are essential for managing and controlling the allocation of resources
such as CPU, memory, and storage. Here’s why they are necessary:

Prevent Resource Exhaustion
● Cluster Stability: In a multi-tenant environment where multiple users or teams

share the same Kubernetes cluster, resource quotas ensure that no single
namespace or application can consume all available resources, which could lead
to resource exhaustion and destabilize the entire cluster.

● Fair Distribution: Quotas help ensure a fair distribution of resources among
different teams or applications, preventing situations where a single team could
monopolize resources, leaving others with insufficient capacity.

26

Limit Overprovisioning
● Cost Management: By setting resource quotas, administrators can prevent

users from overprovisioning resources (e.g., requesting excessive CPU or
memory) that might not be fully utilized, leading to unnecessary costs.

● Efficiency: Quotas encourage efficient use of resources, as users must request
only the resources they actually need, optimizing the overall utilization of the
cluster.

Control Resource Allocation
● Budget Enforcement: In environments where different teams have allocated

budgets or resource limits, quotas enforce these limits, ensuring that teams do
not exceed their allowed resource consumption.

● Prioritization: Quotas can be used to prioritize critical workloads by ensuring
they have sufficient resources, while less critical workloads are restricted to a
smaller quota.

Improve Performance Isolation
● Quality of Service (QoS): By setting resource quotas, you can better manage

the Quality of Service for different applications. This ensures that one
application’s resource-intensive tasks don’t degrade the performance of other
applications running in the same cluster.

● Avoid Resource Contention: Quotas reduce the likelihood of resource
contention, where multiple applications compete for the same resources,
potentially leading to degraded performance or failures.

Compliance and Governance
● Regulatory Compliance: In regulated environments, there may be requirements

to limit and monitor resource usage to ensure compliance with industry standards
or regulations.

● Auditing and Reporting: Quotas facilitate auditing and reporting by providing a
clear record of how resources are allocated and consumed across different
namespaces and teams.

27

Simplify Capacity Planning
● Predictable Usage: Quotas provide predictable resource usage patterns,

making it easier for administrators to plan for future capacity needs and scale the
cluster appropriately.

● Cluster Sizing: By knowing the resource limits for each namespace,
administrators can better estimate the size and capacity requirements of the
entire cluster.

Support Multi-Tenancy
● Tenant Isolation: In multi-tenant environments, where multiple organizations or

teams share the same Kubernetes cluster, quotas help ensure that tenants are
isolated in terms of resource usage. This prevents one tenant's workloads from
affecting the performance or availability of another tenant's workloads.

In summary, resource quotas are critical for ensuring efficient, fair, and predictable
resource usage in a multi-tenant environment. They help maintain cluster stability and
support overall resource management strategies.

8. Audit Logging

A centralized and immutable audit trail is automatically maintained for all activity
performed by the users via all supported interfaces (UI and programmatic).
Administrators are provided with centralized access to the audit logs. The audit logs can
also be configured to be streamed in real time to a configured SIEM.

28

https://docs.rafay.co/integrations/siem/overview/

Why is this needed?

Centralized audit logging is crucial for multi-tenant environments for several important
reasons:

Security and Incident Response
● Comprehensive Monitoring: Centralized audit logs provide a complete and

consistent record of all activities, including user actions, API requests, and
changes to resources. This is essential for monitoring suspicious activities,
detecting security incidents, and responding to breaches.

● Forensic Analysis: In the event of a security incident, centralized audit logs
enable detailed forensic analysis to understand the scope and impact of the
breach. This helps identify the root cause, the sequence of events, and any
affected resources.

Compliance and Regulatory Requirements
● Audit Trail: Many regulatory frameworks (such as GDPR, HIPAA, PCI-DSS)

require organizations to maintain an audit trail of all access and changes to
sensitive systems. Centralized audit logging ensures that these requirements are
met by capturing all relevant actions across the entire cluster.

29

● Reporting and Verification: Centralized logs make it easier to generate
compliance reports and verify that policies and procedures are being followed, as
all logs are aggregated in one place and can be queried or analyzed
systematically.

Operational Efficiency
● Automated Alerts and Monitoring: With centralized logging, it's easier to set up

automated alerts and monitoring for specific events or patterns of behavior that
may indicate an issue. This can help in proactive detection and resolution of
problems before they escalate.

Visibility and Transparency
● Unified View of Activity: Centralized audit logs provide a unified view of all

activities within the tenant, making it easier for administrators, security teams,
and auditors to understand what is happening across the environment. This
visibility is crucial for maintaining control over complex and dynamic
environments.

● Transparency for Multi-Tenant Environments: In multi-tenant environments,
centralized logging ensures that activities from all tenants are logged and can be
reviewed. This promotes transparency and accountability, ensuring that tenants'
actions are visible and can be audited if necessary.

Troubleshooting and Debugging
● Root Cause Analysis: When issues arise, centralized audit logs provide a

complete history of actions and events that can help in diagnosing and resolving
the problem. By having all logs in one place, it becomes easier to trace issues
across different components and identify the root cause.

● Cross-Component Correlation: Centralized logging allows for correlating
events across different components, making it easier to understand complex
interactions and dependencies.

Consistent Policy Enforcement
● Audit Policy Compliance: By aggregating logs in a centralized system,

organizations can ensure that their audit policies are consistently applied and
enforced across the entire environment.

30

In summary, centralized audit logging is essential for maintaining security, compliance,
operational efficiency, and visibility. It provides a single, reliable source of truth for all
activities enabling effective monitoring, troubleshooting, and governance.

9. Cost Allocation

Administrators that configure and enable cost profiles for their Kubernetes clusters will
benefit from the integrated cost visibility and allocation/governance capabilities in the
platform. Enabling this is considered an industry best practice because it will provide the
organization with a view into total spend, spend by workspace, spend by user etc. This
data can then be used for internal billing or charge back workflows.

31

https://docs.rafay.co/cost_management/overview/

Why is this needed?

Cost allocation is crucial for several reasons, particularly in environments where
resources are shared across multiple teams, projects, or applications.

Visibility into Resource Consumption
● Detailed Cost Insights: Kubernetes environments are often complex, with many

services, applications, and teams sharing the same infrastructure. Cost allocation
provides visibility into how resources (like CPU, memory, and storage) are

32

consumed by different entities, helping organizations understand where their
cloud spend is going.

● Identifying Cost Drivers: By breaking down costs at the level of namespaces,
labels, or specific workloads, cost allocation helps identify which applications or
teams are the major cost drivers. This insight is crucial for making informed
decisions about resource usage and cost management.

Accountability and Chargeback
● Team Accountability: Cost allocation allows organizations to assign costs to

specific teams or departments based on their resource usage. This promotes
accountability, as teams are more likely to manage their resources efficiently
when they are responsible for the associated costs.

● Chargeback and Showback: In multi-tenant environments, cost allocation
enables chargeback (billing teams or departments for their usage) or showback
(informing teams of their usage costs without actual billing). This is essential for
fair cost distribution and for promoting cost-conscious behavior across the
organization.

Budget Management and Planning
● Budget Tracking: With accurate cost allocation, organizations can set budgets

for different teams or projects and track how actual spending aligns with these
budgets. This helps prevent cost overruns and ensures that resources are used
within predefined financial constraints.

● Capacity Planning: Understanding how costs are distributed across different
parts of the organization aids in capacity planning. It allows organizations to
anticipate future resource needs and budget accordingly, ensuring that they can
scale efficiently without unexpected costs.

Optimizing Resource Usage
● Cost Efficiency: Cost allocation highlights inefficient use of resources, such as

over-provisioned instances or idle resources. By identifying these inefficiencies,
organizations can take steps to optimize resource usage, such as rightsizing
workloads or implementing auto-scaling, to reduce unnecessary costs.

● Prioritizing Investments: With detailed cost data, organizations can prioritize
investments in areas that deliver the most value relative to their cost, helping to
align spending with business objectives.

33

Multi-Tenancy Support
● Fair Resource Distribution: In multi-tenant clusters, cost allocation ensures that

each tenant (whether a team, department, or external customer) is charged fairly
for their usage. This is critical for maintaining fairness and preventing disputes
over resource costs in shared environments.

● Tenant Isolation and Cost Tracking: Proper cost allocation also supports tenant
isolation by clearly tracking and reporting costs per tenant, which is important for
both internal cost management and for billing external customers.

Supporting Financial Accountability
● FinOps Integration: Cost allocation is a key component of FinOps (Financial

Operations), which focuses on optimizing cloud spending while maintaining
agility. By integrating cost data into DevOps workflows, organizations can ensure
that development and operations teams are making cost-effective decisions
throughout the software development lifecycle.

● Continuous Cost Monitoring: In a DevOps culture, where changes are
frequent, continuous monitoring of costs through allocation helps teams react
quickly to unexpected spending spikes, ensuring that cost efficiency is
maintained even in dynamic environments.

Compliance and Reporting
● Regulatory Compliance: In some industries, there may be regulatory

requirements to track and report how resources are used, especially in shared
environments. Cost allocation facilitates compliance by providing detailed,
auditable records of resource consumption and associated costs.

● Transparent Reporting: Transparent reporting of costs helps stakeholders
understand the financial impact of Kubernetes operations, enabling better
decision-making at the executive level and fostering trust in the organization’s
financial management practices.

Encouraging Efficient Cloud Usage
● Behavioral Impact: When teams are aware of their resource usage and its

associated costs, they are more likely to adopt practices that reduce waste, such
as optimizing application performance, using spot instances, or implementing
efficient data storage strategies.

● Incentivizing Savings: Cost allocation can be used to incentivize teams to find
ways to save costs, perhaps through bonuses or recognition programs for those

34

who keep their spending under control while meeting their performance
objectives.

Cost allocation is essential for providing visibility, accountability, and control over
resource usage and associated costs. It supports financial planning, promotes efficient
use of resources, and ensures that costs are fairly distributed among users or tenants.

10. Network Segmentation

Network segmentation is a common practice to ensure isolation between tenants. In
Kubernetes, Kube-OVN is a network plugin that provides advanced networking
capabilities such as isolation through Virtual Private Clouds (VPCs), security policies,
and subnet segregation.

Kube-OVN, as its name implies, is an integration of the OVN/OVS based networking
with Kubernetes. Multi-tenancy with VPCs is generally considered a best practice.
Kube-OVN enables multi-tenant networking in Kubernetes by introducing a new set of
networking CRDs:

● VPC
● Subnet
● NAT-Gateway

Why is this needed?

In the section below, we describe why network segmentation is a critical control to
achieve multi-tenancy in a shared Kubernetes environment.

Fine-Grained Network Isolation
Native Kubernetes networking assumes all Pods can communicate with each other. For
multi-tenancy, strict isolation is essential, especially in shared environments. Kube-OVN
supports the creation of VPCs, subnets, and logical routers, enabling network
segmentation at a tenant level. With this, you can:

● Isolate network traffic between different tenants (e.g., teams, departments, or
applications).

● Prevent unauthorized cross-communication between namespaces.

35

https://kubeovn.github.io/docs/stable/en/

Support for Virtual Private Clouds (VPCs)
Multi-tenancy often requires each tenant to feel as though they have their own
dedicated network environment, akin to traditional cloud VPCs. Kube-OVN allows you to
create VPC-like constructs in Kubernetes, where each tenant can have its own private
network with separate subnets, routes, and policies.

Advanced Security Features
Native Kubernetes NetworkPolicies are limited in scope and lack some of the more
advanced features needed for multi-tenant environments. Kube-OVN supports
advanced security capabilities such as:

● Security groups and ACLs: Define ingress/egress rules at the network level to
restrict traffic between Pods, subnets, or namespaces.

● Policy-based traffic control: Apply fine-grained policies to allow or deny traffic
between tenants or external resources.

Tenant-Level Resource Allocation
In a shared cluster, ensuring fair and isolated resource allocation is critical to prevent
tenant interference. With Kube-OVN, you can assign unique subnets and IP pools to
specific tenants or namespaces. This ensures:

● No IP conflicts between tenants.
● Network traffic accounting and bandwidth control per tenant.

Logical Routing and NAT
Multi-tenancy often requires tenants to access shared external services while
maintaining internal network isolation. Kube-OVN includes a built-in logical router to
handle routing between subnets, VPCs, and external networks. It also supports NAT for
accessing external services securely.

Cross-Tenant and External Connectivity
Tenants often need controlled access to shared databases, APIs, or legacy systems
without compromising isolation. Kube-OVN provides static routes and BGP support,

36

allowing tenants to connect securely to external networks, shared services, or other
clusters.

37

